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ACHIEVING CONCENTRATION GOALS USING PARAMETRIC 
PHARMACOKINETIC MODELS - A CLINICAL REVIEW OF THE 

CURRENT UNIMODAL GAUSSIAN BAYESIAN APPROACH. 
 

Roger Jelliffe, Laboratory of Applied Pharmacokinetics, USC School of Medicine. 
 

 This approach is the standard one when one uses parametric compartmental 

pharmacokinetic (PK) models. The usual parameter values are either the means or medians as the 

measures of the central tendency, and the standard deviations (SD's) as the measures of 

dispersion. The usual distribution is assumed to be the common Gaussian bell-shaped curve, or a 

lognormal distribution. Usually the mean is used as the measure of the central tendency, and the 

distribution is assumed to be symmetrical about it. This approach was introduced to the 

pharmacokinetic community by Sheiner [1], and is one of his group's most significant 

contributions to the field. 

 

 The (single) most likely values for each parameter (volume of distribution, rate constants, 

clearance, etc.) are then used to compute the dosage regimen to achieve the desired response 

(usually a selected target serum concentration), which is best individualized for each patient 

according to his/her perceived need for the drug and the risk of toxicity which is felt to be 

acceptable in order to obtain the most benefit from the drug. The regimen to achieve and maintain 

the target goal is computed and the future concentrations are predicted using these parameter 

values. 

 

 As data of feedback, usually in the form of measured serum concentrations, is obtained, 

the parameter values are revised using Bayes' theorem. The following objective function is 

minimized: 

 

            ∑  (Cobs - C mod)2   + ∑ (Ppop - Pmod)2   (1) 

                  Var (Cobs)                    Var(Ppop) 

  
where Cobs is each observed serum concentration, Cmod is the concentration in the Bayesian 

fitted model, Var(Cobs) is the SD2 of each observed concentration, Ppop is each population 

(mean) parameter value, Pmod is each fitted maximum aposteriori probability (MAP) Bayesian 

posterior parameter value in the model, and Var(Ppop) is the SD2 of each population parameter 

value. This procedure is a special example of weighted nonlinear least squares fitting (see below) 

in which two types of data, the serum data and the population parameter values, are placed 
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together in the objective function. There are two sets of data points: one or more measured serum 

concentrations, along with the set of population parameter values. Each data point has its own 

SD. The fitting procedure has no information as to whether the data point is a parameter value or 

a serum concentration. All it sees are the various data points and their respective variances. Note 

that the SD's of the serum concentration and parameter value data points do the very important 

job of determining their relative credibility, and of determining just how much the fitting 

procedure proceeds toward the measured serum data or hangs back toward the population 

parameter values. 

 

 The MAP Bayesian fitting procedure has been shown to be somewhat better in predicting 

future serum concentrations than the method of weighted nonlinear least squares, which does not 

have the right-hand term of the above objective function, but only the serum data. MAP Bayesian 

fitting is also significantly better than the earlier traditional but now obsolete method of linear 

regression on the logarithms of the concentrations (see below). 

 

 The MAP Bayesian fitted model is then used to simulate the system to reconstruct the past 

behavior of the drug in that patient, using the patient's individualized pharmacokinetic model. 

Usually it is possible to do this over the patient's entire dosage history, especially when using a 

pharmacokinetic model that can accommodate changes in volume of distribution and the rate 

constant for elimination from dose to dose. The plot is compared with the patient's clinical 

behavior during the same time, thus permitting an evaluation of the patient's individual clinical 

sensitivity to the drug. One can re-evaluate the appropriateness of the original target goal, and can 

choose a different one if needed. After selecting the goal, the regimen to achieve it is computed, 

and the system behavior in the future is predicted using the fitted model. 

 

Comparison with other Methods: Nonlinear and Linear Least Squares 

 

 The conventional weighted least squares procedure is not quite so smart, as its objective 

function  has only the left hand side of the MAP Bayesian objective function, as shown below.  

 

     ∑  (Cobs - C mod)2       (2)   

                                 Var (Cobs)  

 

 Because of this, only the patient's serum data are considered in the fitting procedure, and 

this information is not supplemented by the additional population parameter values which 

represent general information of how the drug has behaved in other similar people in the past. 
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Because of this, fitted models made using weighted nonlinear least squares have been shown to 

predict future serum concentrations slightly less well than those made using MAP Bayesian fitting 

[2]. 

 

Weighted Nonlinear least Squares Regression 

 

 Like the MAP Bayesian procedure, this method can fit the model to data of doses and 

serum levels acquired over many dose intervals.  There is no longer any reason to do the 

traditional "single dose" pharmacokinetic study. Studies can be done on the actual patients being 

treated, as they are receiving their therapy.  The algorithm of Nelder and Mead [3] is a good one 

for fitting the data in both the least squares and the MAP Bayesian fitting procedures. A useful 

nonmathematical description of this method has appeared in BYTE magazine [4]. 

 

 Secondly, like the MAP Bayesian method, weighted nonlinear least squares can provide 

correct weighting of serum level data according to its credibility or Fisher information [5]. It thus 

has the potential for obtaining good estimates of the pharmacokinetic parameter values. 

 

 However, this method, has a weakness.  It cannot take into account population 

information that is generally known about how that drug usually behaves in patients like the 

individual under consideration. As the procedure moves from the starting population parameter 

values to others which fit the data better, it discards the general information used to begin the 

fitting procedure instead of supplementing it with the individual patient's data. Since no fitting 

procedure ever explains the entire relationship between doses given and levels found,  discarding 

the general population information is a suboptimal feature.  It may well be because of this feature 

that the nonlinear least-squares method, while "fitting" serum level data "best", has been shown to 

be a slightly poorer predictor of subsequent serum levels [2].  This method, like linear least 

squares, below, requires at least one serum level for each parameter to be fitted, or at least two 

serum levels in the models considered here, as will be discussed further below. The MAP 

Bayesian method, in contrast, can fit using as few as a single serum concentration data point. This 

is because the MAP Bayesian procedure already has one data point for each parameter. They are 

the collection of population parameter values themselves. The MAP Bayesian procedure therefore 

can start to fit with only a single serum concentration. 
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Linear Least Squares Regression 

 

 Another method used to fit serum concentrations has been the old traditional but now 

obsolete method of linear regression on the logarithms of the serum concentrations (see below). 

This method was the traditional one in which a pharmacokinetic model (restricted to only a single 

compartment) was fitted to data obtained only during a single dose interval,  and specifically to 

the logarithms of the serum concentrations. No weighting was used. It was simple, and was 

widely implemented on hand calculators. It was generally the community standard for monitoring 

serum gentamicin levels ever since Sawchuk and Zaske showed its utility to individualize 

aminoglycoside dosage regimens [6].  

 

 The method requires at least 2 serum levels. It cannot handle anything more than a 1-

compartment model. It takes advantage of the fact that one can linearize the solution of a first-

order linear differential equation for such a model if one transforms the serum level values to their 

logarithms. However, the method has three important weaknesses. 

 

 First, the method can only fit serum level data acquired during a single dose interval. It 

discards all previous serum data (and all previous information about the patient) whenever a new 

set of serum levels is obtained. There is therefore a loss of continuity each time new serum data 

are analyzed. This method is the most wasteful of any in its use of serum levels, as the useful life 

span of a serum level value is shorter than with any of the other methods which do not have to 

discard older data, but can integrate it with more recent data from other dose intervals as 

nonlinear least squares and the MAP Bayesian procedure can do. 

 

 Second, linear regression contains the assumption that the assay error is a constant percent 

of the measured concentrations. The lower the level, the more accurately it is assumed to be 

known. Because of this, if the assay has any other error pattern over its working range (and it 

almost always does!), this method greatly overestimates the credibility of low serum levels over 

high ones.  This can be seen if one considers two serum levels, one of 8.0 ug/ml for example, and 

one of 1.5 ug/ml, as shown in Figure 1. One usually wishes to attach approximately equal 

credibility (weight) to these data points. One might thus assume that their laboratory error is 

approximately equal. Since the Fisher information (an index of credibility) of a data point having a 

normally distributed error is proportional to the reciprocal of the variance of that data point [5], 

the relative  weights given by linear regression to serum levels of 8.0 and 1.5 ug/ml would be 

proportional to the reciprocal of their squares [5]. Because of this, the method of linear least 

squares, which assumes that the error bars are equal on the log scale, arbitrarily gives the value of 
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1.5 ug/ml a weight of 82/1.52 = 64/2.25 = 28.4 times the weight of the level of 8.0 ug/ml. A level 

of 0.1 has 100 times the weight of a level of 1.0, and 1000 times the weight of a level of 10.0. 

Because of this assumption, the error pattern is often quite unrealistic, and results in parameter 

values that are significantly different from those obtained by other methods [2]. 

 

 Third, this method ignores all population  data, and therefore all past experience, 

concerning the behavior of the drug. 

 

Comparison of the Methods 

 

 The MAP Bayesian method [1] appears to be the best of these three [2].  As with 

nonlinear least squares, it can provide correct weighting of serum level data according to the 

known laboratory assay error, and it can analyze such data over many dose intervals. In addition, 

it supplements population data (general knowledge) with specific information about each patient, 

instead of discarding it. Because of this, the method has been a slightly better predictor of future 

serum levels [2]. Lastly, the method requires only a single serum level to begin the analysis, no 

matter how many parameters are present in the population pharmacokinetic model. As more 

serum levels are obtained, the fitted model gradually becomes less of a population model and 

more of a patient-specific model. Both general and patient-specific data are combined intelligently 

in the M.A.P. Bayesian procedure to provide the most probable single-point estimates of the 

parameter values given both types of data and their respective standard deviations. 

 

 Finally, one other fitting procedure, now coming on the scene, holds promise of doing 

better than the MAP Bayesian method. This is the "Multiple Model" method of dosage design [7]. 

It is a stochastic rather than a deterministic method, and is based on nonparametric population and 

individualized pharmacokinetic models. It will be discussed more fully in another paper in this 

collection. 

 

Examples of MAP Bayesian Model - Based Approaches 

 

Gentamicin therapy 

 

 With a 1-compartment pharmacokinetic model in which the elimination rate constant (Kel) 

was composed of a nonrenal component (Knr) and a renal component having a slope (Kslope) 

relationship to CCr so that Kel = Knr + Kslope x CCr, the MAP Bayesian procedure resulted in 

significantly better prediction of future serum concentrations (see Figure 2) than those made using 
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linear regression (Figure 3).  In contrast to most patients in the literature, who may have either 

normal or reduced renal function but whose renal function is stable, many patients in the above 

study were highly unstable and had changing renal function, to a quite significant degree, during 

their therapy [2]. 

 

 Because the software used in that study [2] was designed to operate in the presence of 

significant changes in renal function from dose to dose, it has also been useful in the analysis and 

management of aminoglycoside therapy for patients who must undergo periodic hemodialysis.  

 

Amikacin Therapy 

 

 MAP Bayesian adaptive control has been used to manage amikacin therapy in geriatric 

patients, often for extended periods, by Maire et al [8].  In their patients, whose renal function 

was often quite reduced but who were generally stable, visibly better prediction (and therefore 

control) of serum levels was seen with MAP Bayesian analysis than with their unfitted population 

model, in contrast to the more unstable patients receiving gentamicin described above [2].  These 

results are shown in Figure 4. They are better than those found in the gentamicin patients with 

unstable renal function [2] shown in Figure 2 above.  Further, Figure 5 shows the poorer 

predictions based simply on the population model for Amikacin, without any fitting to the serum 

data. 

 

Vancomycin Therapy 

 

 Vancomycin therapy was evaluated by Hurst et al [9] using a Kslope 2 compartment 

(central plus peripheral compartment) model. Using traditional linear regression, extremely poor 

prediction was found, as shown in Figure 6. In contrast, the 2 compartment model, coupled with 

Bayesian fitting, led to significantly better prediction of future serum levels than did the linear 

regression method, as shown in Figure 7. 

 

Digoxin Therapy 

 

 The digoxin population model used in the USC*PACK MAP Bayesian software [10] is 

based on that described by Reuning, Sams, and Notari [11]. That two - compartment model uses 

both a central (serum) and a peripheral (nonserum) compartment. Computed concentrations of 

drug in the peripheral compartment correlate much better with inotropic effect than do serum 

levels [11]. The USC*PACK digoxin software not only uses this model, but also develops dosage 
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regimens to control either the peak peripheral compartment or the central serum compartment  

concentration.  

  

 Use of this MAP Bayesian software to manage digoxin therapy is illustrated by the 

following example.  A 58 year old man developed rapid atrial fibrillation at another center, after 

missing his usual daily dose of 0.25 mg.  He was clinically titrated with several intravenous doses 

of digoxin, and converted to sinus rhythm.  He was then placed back on his original oral 

maintenance dosage. After a day, atrial fibrillation recurred, showing that his digoxin requirements 

had changed.  He again was titrated with several doses of intravenous digoxin and again 

converted to sinus rhythm.  Once again, he was placed on his original oral maintenance dosage, 

and once again, after about two days, atrial fibrillation recurred. For a third time he was titrated 

with several intravenous doses of digoxin, and for a third time he converted to sinus rhythm.  A 

week of hospital time had been consumed during this phase of his care. 

 

 At this point the MAP Bayesian digoxin software was used to analyze his situation. Data 

of three serum levels, all taken during the post-distributional phase after a dose, showed almost no 

correlation with the patient's clinical behavior. As shown in Figure 8, he was in atrial fibrillation 

when the first serum level of 1.0 ng/ml was obtained, and was in sinus rhythm when the second 

and third serum levels of 1.0 and 1.2 ng/ml were obtained. However, when the 2 - compartment 

digoxin population model was fitted to the data of his various doses and these serum levels, the 

resulting fitted model, shown in Figure 8, was very informative. 

 

 Relating this fitted model to the patient's clinical behavior, sinus rhythm was present 

whenever peripheral concentrations were 10.0 to 13.0 ug/kg. Based on this, a therapeutic goal of 

11.5 ug/kg was chosen for the desired peripheral compartment peak body concentration. The 

resulting regimen was 0.25 mg for the first day, and then averaged 0.57 mg/day.  He was placed 

on a maintenance regimen of 0.5 and 0.625 mg on alternating days. On this regimen he was able 

to leave the hospital in sinus rhythm, and was still in sinus rhythm without evidence of toxicity 

when seen in the clinic 2 weeks later.   

 

Why We Really Monitor Serum Levels: for Model-based, Goal-oriented Drug Therapy 

 

  Traditional approaches to therapeutic drug monitoring have been designed for use only 

in steady state situations, and usually have employed only 1 - compartment models. They have 

developed dosage regimens only for such situations, and have been oriented to keeping serum 

levels within a generally accepted therapeutic range rather than to achieving a specific target 
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goal. Such approaches have made it impossible to deal with patients in their most important 

clinical moments, as, for example, during changing renal function or dialysis, or when certain 

“golden moments” must be understood and a dosage regimen developed to achieve and main-

tain a desired clinical goal immediately, as in the case of the above patient receiving digoxin.  

 

 The above patient on digoxin also shows how truly individualized drug therapy begins 

with clinical selection of an explicit therapeutic goal for each patient, based on that individual 

patient’s need for the drug. One then should achieve that goal with the greatest possible 

precision, without any zone of indifference about it. The approach was highly cost-effective, 

when compared to the fact that an entire week of hosoital time was spent in the previous 

attempts at dosage adjustment without the aid of a model - based, goal - oriented method. 

 

 This patient’s case emphasizes the fact that one does not use serum levels simply to see 

whether or not they are in some general "therapeutic range", nor even to correlate them with the 

patient’s clinical behavior, although that is often possible, but significantly not so in this patient. 

This patient clearly shows that the real reason for monitoring serum levels is rather to find out 

how each patient actually handles the drug, how the drug (and its model) really behaves in that 

individual patient, especially in non-steady-state situations, and to correlate the behavior of 

patient’s fitted model with his own clinical behavior. Only then can one optimally evaluate each 

patient's clinical sensitivity to, and specific need for, a drug. MAP Bayesian adaptive control, in 

the context of model based, goal-oriented individualized drug therapy, brings a precision and 

capability to drug dosage which is not possible with older obsolete approaches based on linear 

regression or simply on the raw data of serum levels alone.  

 

Entering Initial Conditions: Changing Population Models during the Fitting Procedure.  
 

 Most pharmacokinetic analyses deal with patients, and their pharmacokinetic models, who 

have stable values for their various parameters such as volume of distribution, rate constants, 

clearances, etc.. However, this is not always so, even though one can express a rate constant as an 

intercept plus a slope times a descriptor of elimination such as creatinine clearance or cardiac 

output [12], so that renal function can change from dose to dose during therapy, and the patient's 

drug model can keep up with these changes as they take place.  

 

 Probably the most serious problem in analyzing pharmacokinetic data in patients is caused 

by sudden significant changes in a patient's volume of distribution (Vd) of the central (serum 

concentration) compartment. It is generally known, for example, that patients in an ICU setting 
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have larger values for the Vd of gentamicin and other aminoglycosides than do general medical 

patients. Indeed, young very healthy people who suddenly require an aminoglycoside for a 

perforated or gangrenous appendix often have even smaller values for Vd [10]. It is interesting 

that each patient, himself, also goes through such transitions as his clinical status changes.  

 

An Aminoglycoside Patient with sudden change in Clinical Status and Volume of 

Distribution 

 

 An interesting example of such an individual change was a 54 year old man in 

Christchurch, New Zealand, seen through the courtesy of Dr. Evan Begg in the fall of 1991. He 

was 69 in tall, weighed 80 kg, and his serum creatinine on admission was 0.7 mg/dL. He had a 

pyelonephritis, was receiving tobramycin 80 mg approximately every 8 hours. He had a measured 

peak serum concentration of 4.6 and a trough of 0.4 ug/ml respectively, and had been felt by all to 

be having a satisfactory clinical response. During this time, his Vd was 0.18 l/kg, based on those 

two serum samples. However, on about the 6th day, he suddenly and unexpectedly relapsed and 

went into clear-cut septic shock. This patient's antibiotic therapy was discussed in another paper 

in this collection. The present paper concerns how the analysis was able to proceed from one 

population model to the other, switching from that of a general medical patient at first to that of 

an ICU patient, and finally back to that of a general medical patient again. At the time of the 

patient's care, the appropriate software was not available. It was only later, in retrospect, that the 

analysis described below could be done and the patient's case could be more fully understood. 

 

 Following this initial phase and his surprising relapse on therapy, he was aggressively 

treated with much larger doses. He received 300 mg every 12 hours during this time. His serum 

concentrations rose to peaks of 10.1 ug/ml. During this period of sudden septic shock, his serum 

creatinine rose from 0.7 to 3.7 and his CCr fell to about 18 ml/min/1.73m2. After about another 

10 days he improved. At that time his serum concentrations rose to a peak of 16, and it was 

necessary to sharply reduce his dose to 140 mg about every 12 to 24 hours. His serum creatinine 

fell to 1.1 to 1.3 mg/dL, and his CCr rose to 57 ml/min/1.73m2. 

 

 When one tries retrospectively to fit the entire data set, it was simply not possible to get a 

good fit to all the serum data. Most data points were obtained during the second, his sickest 

phase, and they dominated the fit. The ones at the beginning, prior to his sepsis, and at the end, 

after his recovery from it, were not at all well fitted. 
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 Because of this, the data was divided into three parts - an initial one before his relapse into 

sepsis, a second one when he was septic, and a third one following his recovery, but before it was 

felt safe to discontinue his therapy. Each data set was was fitted separately, using the USC*PACK 

programs [10].  

 

 During the first data set, the first 6 days, when his behavior was that of a general medical 

patient, not seriously ill, his Vd was 0.18 L/kg as described above. The problem then was to pass 

on the ending values of his serum and peripheral compartment concentrations as initial conditions 

for the fitting process for the second data set. This was done, using that feature of the 

USC*PACK software. 

 

 A major change in his Vd was then seen when fitting the data obtained during his second, 

septic, phase. The Vd rose from 0.18 in his previous phase to 0.51 L/kg, and his Kslope, the 

increment of elimination rate constant per unit of CCr, fell to zero. However, his Kcp, the rate 

constant from serum to peripheral compartment, rose to 0.255 hr-1, suggesting that he was 

"third-spacing" his tobramycin somewhere. The ending concentrations in his central (serum) 

compartment for this data set were 2.09 ug/ml, and for his peripheral compartment were a very 

high 44.1 ug/kg. 

 

 These ending values were then passed on to the third part of his data set, that of his 

recovery. During this time his peaks were 16 and 12 ug/ml, and his dose was reduced to 140 mg 

every 12-24 hours. His Vd during this third phase, that of recovery, when he was no longer 

seriously ill, had fallen greatly to 0.15 L/kg, close to his previous value as a general medical 

patient. 

 

 The use of initial conditions and of changing population models during the overall fitting 

procedure permitted the intelligent analysis of this patient's data, especially as quite significant 

concentrations were present not only in his central (serum) compartment, but also in his peripheral 

compartment, during the transition from his second to his third, the recovery, phase. 

 

 At the Cleveland Clinic, Drs Peter Slugg and Marcus Haug [13] have spoken of "Vd 

collapse", as the Vd would drop from a larger to a smaller value, as have described it as an 

indicator of incipient recovery of the patient. The present patient not only demonstrated such Vd 

collapse, but also its opposite, Vd expansion, as he made the earlier transition from being a 

general medical patient with a pyelonephritis to a seriously ill ICU patient with life-threatening 

septic shock. Thus not only do different populations of aminoglycoside patients have different 
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values of Vd, but it appears that each individual patient goes through these transitions, as 

demonstrated by this patient. The analysis of this patient's data was greatly facilitated, and indeed 

was only possible, by breaking his dosage history up into several parts. Each part was then 

analyzed, and the ending concentrations from one part were passed on to the next data set as 

initial conditions or concentrations of drug present prior to the first dose given in the next data 

set, with the appropriate population model, if needed, as well.  

 

A Patient on Digoxin when Quinidine was Added. 

 

 Another example of the utility of using initial conditions is the example, provided through 

the courtesy of Dr. Marcus Haug, of a 72 year old woman, 4 ft 10 in tall, weighing only 75 

pounds. She was admitted to a hospital with congestive heart failure and atrial fibrillation. Her 

creatinine clearance (CCr) was 38 ml/min/1.73m2, falling to 23 after admission. She had been 

receiving 0.25 mg of digoxin daily. This was continued afgter admission to the hospital. A serum 

digoxin level was 1.8 ng/ml on admission. 

 

 Following this, her serum creatinine rose to 1.8 mg/dL, and her digoxin level after 5 days 

rose to 2.5 ng/ml. Her digoxin was stopped, even though she had no clinical manifestations of 

toxicity. The next day her serum level had fallen to 2.0, and the next day it was down to 1.4 

ng/ml. 

 

 At this point her ventricular rate with her atrial fibrillation had risen beyond a reasonable 

resting rate, and she was begun again on digoxin, again at 0.25 mg/day, to control it. However, 

quinidine was now also added to her regimen. Her CCr was 22 ml/min/1.73m2. Five days later her 

serum digoxin level was measured and found to be 7.6 ng/ml for a trough and 10.0 ng/ml two 

hours after the next dose was given. 

 

 What was going on here? She again had no clinical evidence of toxicity. Was all of this 

due to the digoxin - quinidine reaction? Was it a problem of digoxin - like material appearing in 

the assay as a result of her poor renal function?  Was there something else in addition? 

 

 The clinical problem was analyzed as follows. First, her original dosage history on digoxin 

alone was fitted to her serum levels, using the 2-compartment population model for digoxin made 

from the work of Reuning, Sams, and Notari [11]. This included the three measured serum levels. 

At the end of that part of her history, just before her first dose of quinidine was added, her fitted 

and predicted central compartment (serum) concentration was 1.19 ng/ml, and her peripheral 
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(nonserum) compartment concentration was 7.58 ug/kg. These relationships are shown in Figure 

9. 

 

 These two ending values from this first phase of her analysis were passed on as initial 

concentrations of drug already present in those compartments of her pharmacokinetic model at 

the time her digoxin was restarted, but now with quinidine as well. The population model for 

digoxin with quinidine [10] was used. This model was not fitted to her subsequent serum levels, 

but merely used to supply predictions of those high measured levels. If the prediction was good, 

the interpretation would be that the interaction would quantitatively account for the measured 

levels found. If not, then another explanation would have to be devised. 

 

 As shown in Figure 10, the predicted concentration of 7.2 ng/ml closely matched the 

measured one of 7.6 ng/ml. In addition, the measured level of 10.0 ng/ml was predicted as 9.9 

ng/ml. Because of these good predictions, it was felt that the digoxin-quinidine interaction 

explained the measured levels well, and that no other alternative explanation was needed. This is 

a good example of how pharmacokinetic analyses can be used to evaluate experiences with 

drugs, and can provide strong evidence for or against a particular question or issue, much more 

than a clinical opinion made without the aid of such a model. The use of initial conditions was 

the key to being able to change from one population model to another in the middle of a 

patient's history. In the same way, one can make the transition from regular theophylline to 

long-acting preparation, for example. With the use of initial conditions, one can thus follow the 

patient as he goes from one situation to another, passing on the data from one set to another. 

 

Limitations of MAP Bayesian Adaptive Control 

 

 The MAP Bayesian approach to adaptive control and dosage individualization is 

straightforward and robust. However, it does not represent an optimal approach to dosage 

individualization, and it has two significant drawbacks from optimality. 

 

 The first drawback is that the parameter values used to describe the behavior of the drug 

are assumed to be either normally or log-normally distributed. This is often not so, as many drugs, 

for example, have rapid and slow metabolizers within the population, and have parameter 

distributions for the elimination rate constant which may be multimodal. Furthermore, the volume 

of diatribution for drugs such as the aminoglycosides is affected by the patient's clinical state as a 

general medical patient or a patient in an intensive care unit, for example. Because of this, 

parameter distributions are often not either normal or lognormally distributed, and are not 
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optimally described by mean, median, or mode values. This point reflects the problems associated 

with making parametric population models. It is largely overcome by making nonparametric 

population models which describe the entire joint density within the population, with virtually one 

support point (set of parameter values, and its estimated probability) for each subject studied in 

the population [14,15]. 

 

 The second drawback is that there is no tool in the MAP Bayesian strategy for evaluating 

the precision with which a desired dosage regimen developed to hit a desired target goal actually 

will do so. The method lacks a vital performance criterion. 

 

 The separation or heuristic certainty equivalence principle is well known among the 

stochastic control community, but less so amobg the pharmacokinetic community. It states [16] 

that when the task of controlling the behavior of a system is separated into the steps of: 

 

1. Obtain the best single point parameter values in the model describing the behavior of the 

system, and then, 

2. Using these single point values to design the inputs to control the system, that the task is 

inevitably performed supoptimally. Yet this is exactly what the MAP Bayesian, and all methods 

which use single point parameter values, do.  

 

 There is no performance criterion in the MAP Bayesian strategy (estimated precision with 

which the desired target will be hit, for example) as there is only one set of parameter values, and 

the target is assumed to be hit exactly. There is no tool to evaluate the predicted precision with 

which the regimen will, or will fail, to hit the desired target. These two limitations are overcome 

by the combination of the new nonparametric population models [14,15] and the "multiple model" 

design of dosage regimens [7]. These approaches will be discussed more fully in other papers in 

this collection. 
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Figure 1.   Error pattern assumed using fitting by linear regression on logarithms of serum levels. 

Note the much greater weighting given to the lower levels. 
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Figure 2. - Predicted versus measured serum Gentamicin levels found with M.A.P. Bayesian 

fitting and the Kslope model.  r = correlation coefficient, ME = mean error, MSE = mean 

squared error. WME = mean weighted error. WMSE = weighted mean squared error. See text 

for discussion. 



 

 

18 

18 

1260
0

6

12

     PREDICTED LEVEL, ug/ml
LINEAR REGRESSION, KEL MODEL

M
E

A
S

U
R

E
D

 L
E

V
E

L
, u

g
/m

l

r = .595
ME= .833
MSE = 3.96
WME = 1.65
WMSE = 15.39

 

Figure 3. - Predicted versus measured serum levels found with linear regression on the 

logarithms of the serum levels. Other symbols as in Figure 2. 
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Figure 4 - Predicted versus measured serum Amikacin levels found with M.A.P. Bayesian fitting, 

1 compartment Kslope model (B1) .  
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Figure 5 - Predicted versus measured serum Amikacin levels found with A Priori population 1 

compartment Kslope model (AP1) .  
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Figure 6 - Predicted versus measured serum Vancomycin levels found with Linear regression (1) 

. 
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Figure 7 - Predicted versus measured serum Vancomycin levels found with a 2 compartment 

Kslope model and Bayesian fitting (2) .  
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Figure 8. Screen plot of patient with atrial fibrillation who was successfully converted to sinus 

rhythm with IV digoxin three separate times, but who relapsed into atrial fibrillation twice when 

put back on his previous maintenance dose. Sinus rhythm was consistently present when 

peripheral body glycoside concentrations were 10-12 ug/kg (right hand scale, and not mg/kg as 

labeled). Selection of a therapeutic goal of 11.5 ug/kg in the peripheral compartment led to a 

dosage regimen of 0.5 and 0.625 mg/day. On that regimen, the patient could be discharged 

home in sinus rhythm and was still in sinus rhythm when seen in clinic 2 weeks later. 
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Figure 9. Plot of serum and peripheral compartment digoxin concentrations of patient admitted 

receiving digoxin. She was receiving 0.25 mg of digoxin daily, ands weighed only 75 lb. Solid 

rectangles - measured serum levels. Solid line and left hand scale - digoxin serum concentrations. 

Dashed line and right hand scale - digoxin peripheral (nonserum) compartment concentrations. 

Using the Bayesian approach,  the population model for digoxin was fitted to the patient's data of 

doses and serum levels. Serum levels rose as her renal function worsened. Digoxin was stopped 

after the serum level of 2.5 ng/ml was obtained, after which her serum levels fell to 1.4, and, in the 

fitted model, finally to 1.19ng/ml at the end of this plot, when digoxin was begun again, but along 

with quinidine. 
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Figure 10. Plot of serum and peripheral compartment digoxin concentrations of patient admitted 

receiving digoxin. In this plot, digoxin was restarted at 0.25 mg/day, but along with quinidine. 

Solid rectangles - measured serum levels. Solid line and left hand scale - digoxin serum 

concentrations predicted using the population model for digoxin with quinidine [2]. Dashed line 

and right hand scale - predicted digoxin peripheral (nonserum) compartment concentrations. This 

plot begins with initial conditions equal to the final concentrations found at the end of the plot in 

Figure 9. 


